Evolutionary Approach to Overcome Initialization Parameters in Classification Problems
نویسندگان
چکیده
The design of nearest neighbour classifiers is very dependent from some crucial parameters involved in learning, like the number of prototypes to use, the initial localization of these prototypes, and a smoothing parameter. These parameters have to be found by a trial and error process or by some automatic methods. In this work, an evolutionary approach based on Nearest Neighbour Classifier (ENNC), is described. Main property of this algorithm is that it does not require any of the above mentioned parameters. The algorithm is based on the evolution of a set of prototypes that can execute several operators in order to increase their quality in a local sense, and emerging a high classification accuracy for the whole classifier.
منابع مشابه
Evolutionary Approach to Overcome Initialization Parameters in Classification Problems
The design of nearest neighbour classifiers is very dependent from some crucial parameters involved in learning, like the number of prototypes to use, the initial localization of these prototypes, and a smoothing parameter. These parameters have to be found by a trial and error process or by some automatic methods. In this work, an evolutionary approach based on Nearest Neighbour Classifier (EN...
متن کاملمروری بر استفاده از محاسبات تکاملی در تجزیهی طیفی تصاویر ابرطیفی
In recent years, the spectral analysis has been one of the most important research areas in remote sensing, which has received different traditional solutions. Most of these methods have several special conditions to work well. However, they suffer from the problems such as sticking in local optimum and having sensibility to parameters initialization. Although the Evolutionary Computation (EC) ...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003